Integral Applications

Area between two curves, integrating on the x -axis

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Area between two curves, integrating on the y-axis

$$
A=\int_{c}^{d}[u(y)-v(y)] d y
$$

Disk Method along the x-axis

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

Disk Method along the y-axis

$$
V=\int_{c}^{d} \pi[g(y)]^{2} d y
$$

Washer Method**

$$
V=\int_{a}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

Method of Cylindrical Shells

$$
V=\int_{a}^{b}(2 \pi x f(x)) d x
$$

Arc Length of a Function of x

$$
\text { Arc Length }=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Arc Length of a Function of y

$$
\text { Arc Length }=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Surface Area of a Function of x

$$
\text { Surface Area }=\int_{a}^{b}\left(2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}\right) d x
$$

