3.7 Improper Integrals & Sequence and Series Review Wednesday, September 7, 2022

On juny of T
Objectives:
1. Retinue an Sequence & series.
2. When understand imposed?
Sequences 4 Secies example problem
1. En = T + Sin
$$\left(\frac{2T}{H^2}\right)$$

Proside Sequence Converge?
I and En = Int T + Sin $\left(\frac{T}{H^2}\right)$
 $= T + Int Sin \left(\frac{T}{H^2}\right)$
 $= T + Sin (0)$
 $= T$
The sequence $2n = T + Sin $\left(\frac{T}{H^2}\right)$
 $n = 20$
 $Dris + C sequence Converge?
2. $2n = \frac{Sin(2k) + 2}{2k}$
Dris + C sequence Converge?
 $I = \frac{Sin(2k) + 2}{2k}$
 $Dris + C sequence Converge?
 $I = \frac{Sin(2k) + 2}{2k}$
 $Dris + C sequence Converge?
 $I = \frac{Sin(2k) + 2}{2k}$
 $\int \frac{1}{2k} = \frac{Sin(2k) + 2}{2k}$
 $\int \frac{1}{2k} = \frac{Sin(2k) + 2}{2k} = \frac{1}{2k}$
 $\int \frac{1}{2k} = \frac{Sin(2k) + 2}{2k} = \frac{1}{2k}$
 $\int \frac{Sin(2k) + 2}{2k}$
 $\int \frac{Sin(2k) + 2}{2k}$
 $\int \frac{Sin(2k$$$$$

5.
$$\partial n = 5 + e^{-3n}$$

 $D_{15} + c_{15} c_{10} c_$

5.
$$\int_{a}^{b} \frac{e_{a}}{1 \cdot 2a}$$
Due, the chick converge?
Apply the divergence test
$$\frac{e_{a}}{2a} = \frac{e_{a}}{2a}$$

$$\int_{a}^{b} \frac{e_{a}}{2a} = \frac{e_{a}}{2a}$$

$$\int_{a}^{b} \frac{e_{a}}{2a$$

I. Improper lutegral type I - The bounds are infinite. 1. if flx) is continuous on [2, so), $\int_{a}^{b} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$ if flx) is continuous on (-00,6] Ζ. ex. $\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to -\infty} \int_{D}^{\infty} f(x) dx$ 3. If the limits above an conveyent, they ex. $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx.$ - 00 E I. Improper lutegrals type I. - f(x) 15 discontinuous on [2,6] -> discontinous at a 1. If f(x) is continuous on (2,6], $\int_{a}^{b} f(x) dx = \lim_{R \to a^{+}} \int_{R}^{b} f(x) dx$ limit appositing a from the right. 2. if flx) is continuous on [2,6], e discontinuous at b - 25ymptote $\int_{a}^{b} f(x) dx = \lim_{R \to b^{-}} \int_{a}^{R} f(x) dx$ limit zppwzdarzy b fran the left. 3. If f(x) is discontinuous at x=c where ce[z,b] and both \int_{a}^{c} fixed x and \int_{a}^{b} fixed x are convergent, $\int f(x) dx = \int f(x) dx + \int f(x) dx.$ Ex. 1001

Ex.
$$\int_{1}^{\infty} \frac{1}{x} dx$$
, this is type I impoper integral.
Howeveld
for the first set of the first set