Objectives:

1. Introduction to Partial Fractions
2. Partial fractions worksheet

Partial Fractions Decomposition
Objective: Decompose $\frac{5 x-4}{x^{2}-x-2}$ into partial fractions
step 1: $\frac{5 x-4}{x^{2}-x-2}=\frac{5 x-4}{(x-2)(x+1)}$ fetor denominator
step 2: $\frac{\hbar x-4}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1} \quad$ write porticl fractions with
step 3.
$5 x-4=A(x+1)+B(x-2) \quad$ multiply bitt sides by
$(x-2)(x+1)$
step 4: Find A \& B.
Substituting the roots, or "zeros"

$$
\text { of }(x-2)(x+1) \text {. }
$$

Root for $(x+1)$ is $x=-1$:

$$
\begin{aligned}
5(-1)-4 & =A(-1+1)+B(-1-2) \\
-9 & =0+B(-3) \\
B & =3
\end{aligned}
$$

Toot for $(x-2)$ is $x=2$:

$$
\begin{aligned}
5(2)-4 & =A(2+1)+B(2-2) \\
6 & =A 3+0 \\
A & =2
\end{aligned}
$$

$$
\begin{aligned}
6 & =A 3+0 \\
A & =2
\end{aligned}
$$

Step 5: $\frac{5 x-4}{x^{2}-x-2}=\frac{2}{x-2}+\frac{3}{x+1}$
Integration by Partial Fractions

- $\int \frac{5 x-4}{x^{2}-x-2} d x=\int\left(\frac{2}{x-2}+\frac{3}{x+1}\right) d x$
partial fractions

$$
=\int \frac{2}{x-2} d x+\int \frac{3}{x+1} d x
$$

decompusition

$$
=2 \ln (x-2)+3 \ln (x+1)+C
$$

Group Activity:
Partial Fractions Worksheet.

