3.4 Partial Fractions

Friday, October 14, 2022

Objectives:
1. Torboduction to Perfiel Frections
2. Pertial factions worksheet
Partial Fractions Decomposition
Objective: Decompose
$$5x-4$$
 into partial fractions
 x^2-x-z
 $step 1: 5u-4 = 5u-4$ factor denominator
 x^2-x-z
 $step 1: 5u-4 = 5u-4$ factor denominator
 x^2-x-z (u-z)(u+1)
 $utep 2: 5x-4 = A + B$ worke partial fractions with
 $(x-z)(u+1) + x-z + 1$ constant $A \neq B$.
 $step 3.$
 $5x-4 = A(x+1) + B(x-2)$ multiply bits adds by
 $(x^2z)(x+1)$
 $btep 4: Find A \neq B.$
 $subdiving the mosts, or "zeros"$
 $0 af (x-z)(u+1).$
Root for (u+1) is $x=-1:$
 $5(-1)-4 = A(-1+1) + 13(-1-z)$
 $-9 = 0 + B(-3)$
 $B = 3$
 $12bt for (u-z) is $x=z:$
 $5(z)-4 = H(z+1) + B(z-z)$
 $(z = A3 + 0)$
 $A = z$$

6 = A3 + 0A = z $5 + ep 5; \frac{5x-4}{x^2-x-2} = \frac{2}{x-2} + \frac{3}{x-4}$ Integration by Partial Fractions • $\int \frac{5x-4}{x^2-x-2} dx = \int \left(\frac{2}{x-2} + \frac{3}{x+1}\right) dx$ = $\int \frac{2}{x} dx + \int \frac{3}{x+1} dx$ partial fractions $\int \frac{2}{x-2} dx + \int \frac{3}{x+1} dx$ decomposition = 2/n(x-z) + 3/n(x+1) + CGroup Activity: Partial Fractions Worksheet.