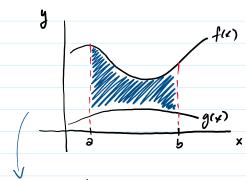
2.1 Area Between Curves

Monday, October 31, 2022

Objectives:

- 1. Determine the area of a region between two curves 2. Find the area of a compound region.

Area between two comes



$$A = \int_{a}^{b} [f(x) - g(x)] dx \quad \text{for } f(x) \ge g(x)$$

Example:

· Given f(4)=x+4 and g(x)=3-4/2 in the interval [1,4].

$$A = \int_{1}^{4} \left[x+4 - (3-\frac{1}{2}) \right] dx$$

$$= \int_{1}^{4} \left[\frac{3x}{2} + 1 \right] dx$$

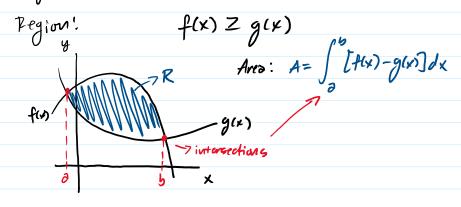
$$= \int_{1}^{4} \frac{3x}{2} dx + \int_{1}^{4} dx$$

$$= \frac{3x^{2}}{4} \Big|_{1}^{4} + x \Big|_{1}^{4}$$

$$= \frac{3(4)^{2}}{4} + 4 - \left(\frac{3(1)^{2}}{4} + 1 \right)$$

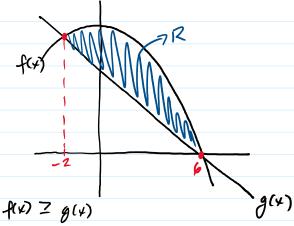
$$= 16 - \frac{7}{4}$$

Finding the Area of a Region between two comes.



Example:

· Giren
$$f(x) = 9 - (x/2)^2 + g(x) = 6 - x$$
.



$$f(v) = g(x)$$

$$9 - (\frac{y}{z})^{2} = 0 - x$$

$$9 - \frac{x^{2}}{4} = 0 - x$$

$$36 - x^{2} = 24 - 4x$$

$$x^{2} - 4x - 12 = 0$$

$$(x - 0)(x + 2) = 0$$

$$x = 6 + x = -2$$

$$A = \int_{0}^{6} \left[9 - (\frac{x}{2})^{2} - (6 - x) \right] dx$$

$$= \int_{-2}^{6} \left[9 - \frac{x^2}{4} - 6 + x \right] dx$$

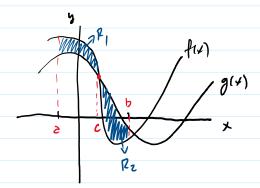
$$= \int_{-z}^{b} \left[3 - \frac{x^2}{4} + x \right] dx$$

$$= \int_{-z}^{6} \frac{3}{3} dx - \int_{-z}^{6} \frac{x^{2}}{4} dx + \int_{-z}^{6} x dx$$

$$= 3x - \frac{x^{2}}{12} + \frac{x^{2}}{2} \Big|_{-2}^{6}$$

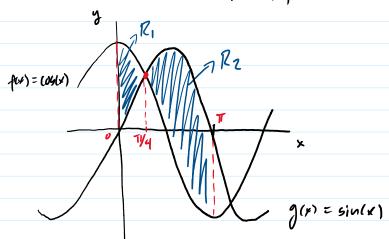
Finding the Avers of Compound Regions

Area of a region that cooss



· Example:

If R is a region between
$$f(x) = \sin(x)$$
 and $g(x) = \cos(x)$ over the interval $[0, \Pi]$, find the erea of R.



Intersection: x= 1/4 because ws(1/4) = sin(1/4)

Two bounds:
$$(QP_1, x \in [0, T/4])$$
, $(09(x) \neq 3in(x) \rightarrow [gin(x) - (09(x)] = (09(x) - sin(x))$
 $(QP_1, x \in [T/4, T])$, $(09(x) \neq 3in(x) \rightarrow [gin(x) - (09(x)] = gin(x) - (09(x))$

$$A = \int_{\partial}^{b} |g_{in}(x) - cos(x)| dx$$

$$= \int_{0}^{T} |g_{in}(y) - cos(x)| dx$$

$$(T/y) = \int_{0}^{T} |g_{in}(y) - cos(x)| dx$$

=
$$\int_{-\pi}^{\pi/4} (\cos(x) - \sin(x)) dx + \int_{\pi/...}^{\pi} (\sin(x) - \cos(x)) dx$$

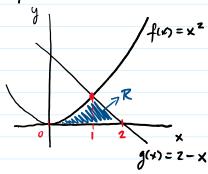
$$= \int_{0}^{T/4} (\cos(x) - \sin(x)) dx + \int_{\pi/4}^{T} (\sin(x) - \cos(x)) dx$$

$$= [\sin(x) + \cos(x)] \Big|_{0}^{T/4} + [-\cos(x) - \sin(x)] \Big|_{\pi/4}^{T}$$

$$A = 2\sqrt{2}$$

Finding the Area of a Complex Region

Example:



Intersection:
$$x^2 = 2-x$$

 $x^2+x-z = 0$
 $(x-1)(x+z) = 0$
 $(x=1), x=-z$

$$CA_{1}$$
, $x=[0,1]$, $f(x)=x^{2}$
 CA_{2} , $x=[1,2]$, $g(x)=z-x$
 $A_{1}=\int_{0}^{1}x^{2}dx=\frac{x^{3}}{3}\Big|_{0}^{1}=\frac{1}{3}$

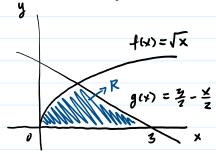
$$A_2 = \int_{1}^{2} (z-x)dx = 2x - \frac{x^2}{2}\Big|_{1}^{2} = \frac{1}{2}$$

Mini- Activities

1. If R is the region bounded above by
the graph of the fraction f(x) = xand below by the graph of the
fraction $g(x) = x^4$, find the area of region R.

Draw the functions and shade R.

- z. If R is the region between the graphs of the functions $f(x) = \sin(x)$ and $g(x) = \cos(x)$ over the interval [7/2, 277], find the region R. Draw the functions and check R.
- 3. Consider the graph bolow



Find the area of R.

4. Given for= 1/x, gri)= 1/x2, and x=3

gketch the equations and shade the area of the region between the corres. Determine its area