2.1 Area Between Curve Cont. \& 2.2 Volume by Slicing

Objectives:

1. Area of a region between two curves integrating with respect to the dependent variable.
2. Determine ta volume of a solid.
a. Slicing method

Integrating with respect to x
Ex.

Intersection:

$$
\begin{gathered}
x^{2}=2-x \\
x^{2}+x-2=0 \\
(x-1)(x+2)=0 \\
x=D_{1} x=-2
\end{gathered}
$$

$$
\begin{aligned}
& \text { @ } A_{1}, x=[0,1], f(x)=x^{2} \\
& \text { @ } A_{2}, x=[1,2], g(x)=2-x \\
& A_{1}=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \\
& A_{2}=\int_{1}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{1} ^{2}=\frac{1}{2}
\end{aligned}
$$

total Area: $A=A_{1}+A_{2}=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$
Integrating with respect to y

Integrating with respect to y
Ex.

$$
\begin{array}{cc}
f(x)=x^{2} & \text { and } \\
y=x^{2} & g(x)=2-x \\
\sqrt{y}=x & y=2-x \\
\downarrow & 2-y=x \\
x=v(y)=\sqrt{y} & \\
& x=u(y)=2-y
\end{array}
$$

$$
\begin{aligned}
A & =\int_{0}^{1}(2-y-\sqrt{y}) d y \\
& =2 y-\frac{y^{2}}{2}-\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{1} \\
A & =\frac{5}{6}
\end{aligned}
$$

Mini-Assignment port 1

Determine the aver of R
by integrating with mspect to y.
Volume of solids using the slice method

- solid in 3D Example

A pursmid: Recall that the formula is $V_{\text {nursmid }}=1 a^{2} h$ for a gasore base

- solid in 3D Example

A pyramid: Recall that the formula is $V_{\text {pyramid }}=\frac{1}{3} a^{2} h$ for a square base.

- A squire base with a as the length of one side
- Are of a square with side s is s^{2}.
- Since the lase is a square, then the cross-sections are also square.

Using similar triangles,
Dree for each cross -section is

$$
\begin{aligned}
\frac{s}{a} & =\frac{y}{h} \\
s & =\frac{\partial y}{h} \\
A(y) & =s^{2}=\left(\frac{\partial y}{h}\right)^{2}
\end{aligned}
$$

see of cross-sectionol squares

$$
\begin{aligned}
V & =\int_{0}^{h} A(y) d y \\
& =\int_{0}^{h}\left(\frac{\partial y}{h}\right)^{2} d y \\
& =\frac{a^{2}}{\ln ^{2}} \int^{h} y^{2} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{2}}{h^{2}} \int_{0}^{n} y^{2} d y \\
& =\left.\frac{\partial^{2}}{h^{2}} \frac{y^{3}}{3}\right|_{0} ^{h} \\
& =\frac{\partial^{2}}{h^{2}} \frac{h^{3}}{3} \\
V & =\frac{1}{3} a^{2} h \quad
\end{aligned}
$$

Volume of a Solid of Revolution Using the Slicing method Solid is defined by these functions

$$
f(x)=x^{2}-4 x+5, \quad x=1, \text { and } x=4
$$

first:

second: Revolve the graph around the x-axis

- Area of a circle with some radius r.

Aver of a circle $2 s$ a fraction of x.

$$
A(x)=\pi r^{2}=\pi(f(x))^{2}=\pi\left(x^{2}-4 x+5\right)^{2}
$$

Food the volume

$$
\begin{aligned}
V & =\int_{a}^{b} A(x) d x \\
& =\int_{1}^{4} \pi\left(x^{2}-4 x+5\right)^{2} d x \\
& =\int_{1}^{4} \pi\left(x^{4}-8 x^{3}+26 x^{2}-40 x+25\right) d x \\
& =\left.\pi\left(\frac{x^{5}}{5}-2 x^{4}+\frac{26 x^{3}}{3}-20 x^{2}+25 x\right)\right|_{1} ^{4} \\
V & =\frac{78}{5} \pi
\end{aligned}
$$

Mini-Asxignment Port 2

1. Use the slicing method to derive the formula $V=1 / 3 \pi r^{2} h$ for the volume of a circular cone.
a. drew the solid with $2 \times i 3$ lends and variables, and cross sections.
b. Set-up and solve the integral.
rough sketch

2. Fraud the volume of the solid defined by, the function
$f(x)=\frac{1}{x}$ revolved around the x-axis rough sketch over the internal $[1,2]$.
over the internal $[1,2]$.
3. Sketh the solid with ais labels.
b. Set-up and solve the integral.

