2.2 Volume by Slicing Cont. \& 2.3 Cylindrical Shells Monday, November 7, 2022

Objectives:

1. Contiuve on finding volume of solid of revolution, using the wester method.
2. Introduction to the shell method.

The washer method
Given continuous functions $f(x)$ and $g(x), f(x) \geq g(x)$
over the intens d $[2, b)$. over the intend $[2, b]$.

$$
V=\int_{2}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

Example:
Suppose we hare a solid bounded by the fonctions $f(x)=x$ and $g(x)=y / x$ over the interval $[1,4]$, and revolved around the x-axis.

$$
V=\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x
$$

$$
\begin{aligned}
& =\int_{1}^{4} \pi\left(x^{2}-\left(\frac{1}{x}\right)^{2}\right) d x \\
& =\left.\pi\left(\frac{x^{3}}{3}+\frac{1}{x}\right)\right|_{1} ^{4} \\
V & =\frac{8 \pi}{4}
\end{aligned}
$$

The washer method with different axis of revolution
revolve around $y=-2$

Volume of z solid revolve around $y=-2$.

- radius of outer circle: $f(x)+2=(4-x)+2=6-x$.
- radius of inner circe: $g(x)=2$

$$
\begin{aligned}
V & =\int_{0}^{4} \pi\left((6-x)^{2}-(2)^{2}\right) d x \\
& =\left.\pi\left(\frac{x^{3}}{3}-6 x^{2}+32 x\right)\right|_{0} ^{4} \\
V & =\frac{160 \pi}{3}
\end{aligned}
$$

Mini-Activity Port 1

1. Find the volume of the solid vising the washer method revolved around the x-axis bounded
by the functions $f(x)=\sqrt{x}$ and $g(x)=1 / x$
over the interval $[1,3]$. Sketch tee solid
2. Fraud the volume of the solid using the washer method revolved around $y=-1$ bounded by
He functions $f(x)=x+2$ a er the interval $[0,3]$. Sketch He sild.

Cylindrical shells
Recall: Disk and washer methods are ways to fund volumes of solid of revolution integrating long the axis parallel to the eris af revolution.

Shell method: we integrate along the coordinate axis perpendicular to the axis of revolution.

revolve around the y-axis.
Volume of a cylinder: $V_{\text {cylinder }}=\begin{gathered}\pi r^{2} h \\ \downarrow \\ \end{gathered}$ rains height
Cylindrical shells with two redivs: $r_{1} \rightarrow$ outer redis $r_{2} \rightarrow$ inner radios

$$
V_{\text {shell }}=\pi r_{1}^{2} h-\pi r_{2}^{2} h
$$

$$
\begin{aligned}
& V_{\text {shell }}=2 \pi \underbrace{\left(\frac{r_{2}+r}{2}\right)}_{r} h \underbrace{\left(r_{2}-r_{1}\right)}_{\Delta r} \\
& V_{\text {shell }}=2 \pi r h \Delta r
\end{aligned}
$$

In terms of x :

$$
V_{\text {shell }}=2 \pi x f(x) \Delta x
$$

Assume $f(x)$ is continovos, then

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Example:
Find the Volume of the region vang the shell method revolved around the y-axis bonded by $f(x)=1 / x$
over the intadal $[1,3]$.

$$
\begin{aligned}
V & =\int_{1}^{3} 2 \pi x\left(\frac{1}{x}\right) d x \\
& =\int_{1}^{3} 2 \pi d x \\
& =\left.2 \pi x\right|_{1} ^{3} \\
V & =4 \pi
\end{aligned}
$$

Wini-Actinty Part 2
3. Fraud the volume of the region bounded shove by $f(x)=x^{2}$ and below by the x-axis over the interval $[1,2]$, rordued around the y-axis. sketch the solid.

