
2.4 Arc Length of a Curve and Surface Area

Monday, November 14, 2022

Objectives:

- 1. Determine the length of a corre between two points
- 2. Find surface area of a solid of revolution.

Arc length of the come y = f(x)

Gegment length
$$\sqrt{(\Delta x)^2 + (\Delta y)^2}$$

 $\Delta x \sqrt{1 + ((\Delta y)^2/(\Delta x)^2)^2}$

Mean Value theorem: There exist
$$X_i^* \in [X_{i-1}, X_i]$$

such that $f'(X_i^*) = \Delta y$.

We can remote the segment length 25

$$\Delta \times \sqrt{1 + (f^{\dagger}(x_i^*))^2}$$

We need to edd all lengths of all line segments

Example:

Let $f(x) = 2x^{3/2}$. Find the erc length of f(x) over the interval [0,1].

Arc length =
$$\int_{0}^{1} \sqrt{1 + (3x^{1/2})^{2}} dx$$

$$= \int_{0}^{1} \sqrt{1 + 9x} dx$$

$$= \int_{0}^{1} \sqrt{1 + 9x} dx$$

$$= \int_{0}^{10} \sqrt{1 + 9x} dx$$


$$= \frac{1}{9} \frac{9/2}{3/2} \Big|_{1}^{10}$$

$$= \frac{2}{10} (10)^{3/2} - \frac{3}{2} (1)^{3/2}$$

$$= \frac{2}{17} (10)^{3/2} - \frac{3}{17} (1)^{3/2}$$
Arc length = $\frac{2}{17} (10^{3/2} - 1)$

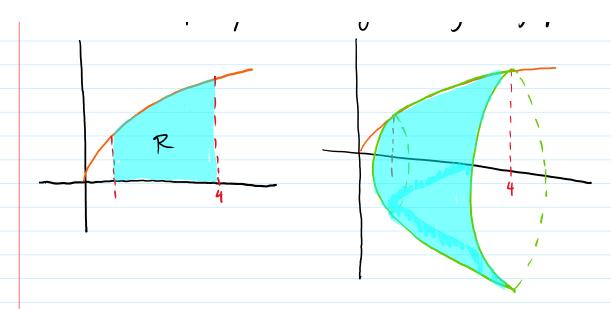
Area of a surface of revolution

y are is just a slice

$$G = \prod \left(\prod_{i=1}^{n} + \prod_{i=1}^{n} \right) \left(\Delta x \right) \prod_{i=1}^{n} \left(\frac{f(x_{i-1}) + f(x_{i})}{f(x_{i})} \right) \Delta x \prod_{i=1}^{n} \left(\frac{f'(x_{i}^{*})}{f'(x_{i}^{*})} \right)^{2}$$

$$= \prod \left(\frac{f(x_{i-1}) + f(x_{i})}{f(x_{i}^{*})} \right) \Delta x \prod_{i=1}^{n} \left(\frac{f'(x_{i}^{*})}{f'(x_{i}^{*})} \right)^{2}$$

$$= 2 \prod \left(\frac{f(x_{i-1}) + f(x_{i})}{f(x_{i}^{*})} \right) \Delta x \prod_{i=1}^{n} \left(\frac{f'(x_{i}^{*})}{f'(x_{i}^{*})} \right)^{2}$$


by the intermediate value theorem.

Surface Area =
$$\lim_{n\to\infty} \frac{\int_{i=1}^{n} 2\pi (f(x_{i}^{**})) \triangle \times \sqrt{1+(f'(x_{i}^{**}))^{2}}}{2\pi f(x) \sqrt{1+(f'(x))^{2}}} dx$$

$$= \int_{i=1}^{6} 2\pi f(x) \sqrt{1+(f'(x))^{2}} dx$$

Example:

Let $f(x) = \sqrt{x}$ over the interval [1,4]. Find the surface area of the surface generated by revolving the graph around the x-axis.

Mini - Activity

- 1. Let f(x) = Sin(x). Colculate the erc length of the graph of f(x) over the interval [0,11]. Set-up only the integral.

 2. Let g(y) = /y. Colculate the orc length of the graph of all more than interval [1.4] Colon and the integral.

ן או ארי סלי ליצי) אוטו ווייש ועויש ישנ טען וין, אני שוף טשוק זיים וערידןישי.
2. Let $g(y) = \frac{1}{y}$. Calculate the arc length of the graph of $g(y)$ over the interval [1,4]. Set-up only the integral. 3. Let $f(x) = \sqrt{1-x^2}$ over the interval $[0, \frac{1}{2}]$. Find the confect
g(y) over the interval [1,4]. Set-up only the integral.
3. let f(x) = Ji-x' over the interval [0,1/2]. Find the surface
erez of the surface generated by revolving the graph of $f(x)$ around the x-zxis. 4. Let $g(y) = \sqrt{9-y^2}$ over the interval $y \in [0,2]$. Find the surface generated by revolving the graph of $g(y)$ around the y-zxis.
around the x-2xis.
4. Let g(y) = \(\int 9 - y^2 \) over the interval y \(\int [0,2] \). Find the
surface generated by revolving the graph of gly) around the y-axis.
, , , , , , , , , , , , , , , , , , , ,