2.4 Arc Length of a Curve and Surface Area

Objectives:

1. Determine the length of a cure between two points
2. Find surface area of a solid of revolution.

Arc length of the curve $y=f(x)$

segment length $\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$

$$
\Delta x \sqrt{1+\left((\Delta y)^{2} /(\Delta x)^{2}\right)}
$$

Mean Valve theorem: There exist $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ such the $f^{\prime}\left(x_{i}^{*}\right)=\frac{\Delta y}{\Delta x}$.

We can rewrite the sequent length is

$$
\Delta x \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}}
$$

We need to add all lengths of $s 11$ line sequent

$$
\begin{aligned}
\text { Arc length } & \approx \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
& -1 \ldots \ldots{ }^{n} \sqrt{1 \cdot n 1 / . x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \Delta x \\
\text { Arc length } & =\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Example:
Let $f(x)=2 x^{3 / 2}$. Find the ere length of $f(x)$ over the interval $[0,1]$.
Find derivative: $f^{\prime}(x)=3 x^{1 / 2}$.

$$
\begin{aligned}
& \text { Arc length }=\int_{0}^{1} \sqrt{1+\left(3 x^{1 / 2}\right)^{2}} d x \\
&=\int_{0}^{1} \sqrt{1+9 x} d x \text { et } u=1+9 x \text { use u-sub } d u=9 d x \\
&=\int_{1}^{10} \sqrt{u} \frac{1}{9} d u \\
&=\frac{1}{9} \int_{1}^{10} u^{1 / 2} d u \\
&=\left.\frac{1}{9} \frac{u^{3 / 2}}{3 / 2}\right|_{1} ^{10} \\
&=\frac{2}{27}(10)^{3 / 2}-\frac{2}{27}(1)^{3 / 2} \\
&=\frac{2}{27}\left(10^{3 / 2}-1\right) \\
& \text { Arc length }
\end{aligned}
$$

Area of a surface of revolution y

$$
\begin{aligned}
S & =\pi\left(r_{1}+r_{2}\right) \ell \\
& =\pi\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \Delta x \sqrt{1+\left(\Delta y_{i} / \Delta x\right)^{2}} \\
& =\pi\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \Delta x \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}}
\end{aligned}
$$

$$
S=\underbrace{2 \pi\left(f\left(x_{i}^{x *}\right)\right.}) \Delta x \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}}
$$

by mean valve theorem
by the intermediate valve theormen.
Surface Area $\approx \sum_{i=1}^{n} 2 \pi\left(f\left(x_{i}^{* *}\right)\right) \Delta x \sqrt{1+\left(f^{\prime}\left(x_{1}^{*}\right)\right)^{2}}$
Surface Ares $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi\left(f\left(x_{i}^{* *}\right)\right) \Delta x \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}}$
of solid of revolution

$$
=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Example:
Let $f(x)=\sqrt{x}$ over the interval $[1,4]$. Find the surface area of the surface generated by revolving the graph around the x-axis.

We have $f(x)=\sqrt{x}$. So $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.

$$
\begin{aligned}
& \text { Surface ara }=\int_{1}^{4} 2 \pi \sqrt{x} \sqrt{1+(1 / 2 \sqrt{x})^{2}} d x \\
& =\int_{1}^{4} 2 \pi \sqrt{x} \sqrt{1+1 / 4 x} d x \\
& =\int_{1}^{1} 2 \pi \sqrt{x+\frac{1}{4}} d x \\
& \text { let } u=x+1 / 4 \\
& d u=d x \\
& \text { bounds: } x=1: u=1+1 / 4=5 / 4 \\
& x=4: 4+1 / 4=17 / 4 \\
& =\int_{5 / 4}^{12 / 4} 2 \pi \sqrt{u} d u \\
& =\left.2 \pi \frac{2}{3} n^{y / 2}\right|_{5 / 4} ^{A / 4} \\
& \text { Surface Area }=\frac{\pi}{4}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

Mini -Activity

1. Let $f(x)=\sin (x)$. Calculate the arc length of the graph of $f(x)$ over the interval $[0, \pi]$. Set-op only the integral.
2. Let $g(y)=1 / y$. Calculate the ere length of the graph of

3. Let $g(y)=1 / y$. Calculate the arc length of the graph of $g(y)$ over the interval $[1,4]$. Set-up only the integral.
4. Let $f(y)=\sqrt{1-x}$ over the interval $[0,1 / 2]$. Find the surface area of the surface generated by revolving the graph of $f(x)$ around the x-axis.
5. Let $g(y)=\sqrt{9-y^{2}}$ over the interval $y \in[0,2]$. Find the surface generated by revolving the graph of $g(y)$ around the y-axis.
