Objectives:

1. Locate points in the plane using poler coordinate.
2. Convert points between rectangular and poler.
$\frac{\text { Rectangular coordinates }}{y}$

$\frac{\text { Polar coordinates }}{\pi / 2}$

$$
\left.\begin{array}{l}
\cos (\theta)=\frac{x}{r} \rightarrow x=r \cos (\theta) \\
\sin (\theta)=\frac{y}{r} \rightarrow y=r \sin (\theta) \\
r^{2}=x^{2}+y^{2} \text { and } \tan (\theta)=\frac{y}{x}
\end{array}\right\} \quad \text { convert }(x, y) \text { to }(r, \theta)
$$

Converting Points Between Coordinate Systems
Examples: from $(x, y) \rightarrow(r, \theta)$

- point $(1,1)$ polar

Find r :

$$
m^{2}=v^{2}+u^{2}
$$

Find θ :

$$
\tan (\theta)=y / x
$$

Find r :
Find θ :

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =1^{2}+1^{2} \quad \text { and } \quad \begin{array}{rlr}
& \tan (\theta) & =y / x \\
& =1 / 1 \\
& =1
\end{array} r^{2}
\end{aligned}
$$

ny

$$
r=\sqrt{2}
$$

$$
\tan (\theta)=\pi / 4
$$

So, $\quad(x, y) \rightarrow(r, \theta)$

$$
(1,1) \rightarrow(\sqrt{2}, \pi / 4)
$$

- Point $(0,3)$

Find r :

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =(3)^{2}+0^{2} \\
& =9 \\
r^{2} & =9 \\
r & =3
\end{aligned}
$$

Find θ :

$$
\begin{aligned}
\begin{aligned}
\tan (\theta) & =\frac{y}{x} \\
& =\frac{3}{0}
\end{aligned} \rightarrow \text { undefined } \\
\underbrace{}_{\text {this means } \theta}=\pi / 2
\end{aligned}
$$

So, $\quad(x, y) \rightarrow(r, \theta)$

$$
(0,3) \rightarrow[3, \pi / 2)
$$

- point $(5 \sqrt{3},-5)$

Polar

Find r :

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =(5 \sqrt{3})^{2}+(-5)^{2} \\
& =75+25
\end{aligned}
$$

Find θ :

$$
\begin{aligned}
\tan (\theta) & =\frac{y}{x} \\
& =-\frac{5}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =(5 \sqrt{3})^{21}+(-5)^{2} \\
& =75+25 \\
r^{2} & =100 \\
r & =10
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{\bar{x}}{x} \\
& =\frac{-5}{5 \sqrt{3}} \\
& =-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \theta=-\frac{\pi}{6}
\end{aligned}
$$

So, $(x, y) \rightarrow(r, \theta)$
$(5 \sqrt{3},-5) \rightarrow(10,-\pi / 6)$ clockwise
or $(10,11 \pi / 6)$ counterclockwise
Example: $(r, \theta) \rightarrow(x, y)$

- poler point $(3, \pi / 3)$
(ting) point

Find x :

$$
\begin{aligned}
x & =r \cos (\theta) \\
& =3 \cos (\pi / 3) \\
& =3(1 / 2) \\
x & =3 / 2
\end{aligned}
$$

Find y :

$$
\begin{aligned}
y & =r \sin (\theta) \\
& =3 \sin (\pi / 3) \\
& =3(\sqrt{3} / 2) \\
y & =\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

So, $\quad(r, \theta) \rightarrow(x, y)$

$$
(3, \pi / 3) \rightarrow(3 / 2,3 \sqrt{3} / 2)
$$

- polar point $(6,-5 \pi / 6)$

Find x :

$$
\begin{array}{rlrl}
& \text { and } x: & \text { Find } y: \\
x & =r \cos (\theta) & y=r \sin (\theta) \\
& =6 \cos (-5 \pi / 6) & & =6 \sin (-5 \pi / 6) \\
& =6(-\sqrt{3} / 2) & & =6(-1 / 2) \\
x & =-3 \sqrt{3} & y & =-3
\end{array}
$$

So, $(r, \theta) \rightarrow(x, y)$

$$
(3,-5 \pi / 6) \rightarrow(-3 \sqrt{3},-3)
$$

Mini-Activity Port 1

1. Convert $(-8,-8)$ into poler coordinates.
2. Convert $(4,2 \pi / 3)$ into rectangles coordinates
