Definition:
Given independent and Identically Distribited ind random variables $X_{1}, x_{2}, \ldots, X_{n}$, the ample ween denoted \bar{X} is defined $a s$

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} .
$$

We cen iso write Mn.
Since $X_{i}^{\prime} s$ are random variables, the sample mean $\bar{x}=\operatorname{Mn}_{n}(x)$ is also a random variable.

Expected value:

$$
\begin{aligned}
E[\bar{x}] & =\frac{E\left[x_{1}\right]+E\left[x_{2}\right]+\cdots+E\left[x_{n}\right]}{n} \rightarrow \text { (by linearity of Expectation) } \\
& =\frac{n E[x] \rightarrow \text { since } E\left[x_{i}\right]=E[x]}{n} \\
E[\bar{x}] & =E[\bar{x}]
\end{aligned}
$$

Vaizuce:

$$
\begin{aligned}
\operatorname{Vor}(\bar{x}) & =\frac{\operatorname{Vrr}\left(x_{1}+x_{2}+\cdots+x_{n}\right)}{n^{2}} \rightarrow \text { since } \operatorname{Vor}(2 x)=2^{2} \operatorname{Var}(x) \\
& =\frac{\operatorname{Var}\left(x_{1}\right)+\operatorname{Var}\left(x_{2}\right)+\cdots+\operatorname{Var}\left(x_{n}\right)}{n^{2}} \rightarrow \text { since } x_{i}^{\prime} \text { s are ind. } \\
& =\frac{n \operatorname{Var}(x)}{n^{2}} \rightarrow \operatorname{since} \operatorname{Var}\left(x_{1}\right)=\operatorname{Var}(x) \\
\operatorname{Var}(\bar{x}) & =\frac{\operatorname{Vr}(x)}{n}
\end{aligned}
$$

Weak law of large numbers.
Let $X_{1}, x_{2}, \cdots, x_{n}$ be iid $r v$ with finite expected value $E\left[x_{i}\right]=\mu<\infty$. then, for any $\in>0$

$$
\lim _{n \rightarrow \infty} P(|\bar{x}-\mu| \geq \epsilon)=0
$$

Proof: Assume that $\operatorname{Var}(x)=\sigma^{2}$ is finite.
Using chebyshev's inequality

$$
\begin{aligned}
P(|\bar{x}-u| \geq t) & \leq \frac{\operatorname{Vir}(\bar{x})}{\epsilon^{2}} \\
& =\frac{\operatorname{Ver}(x)}{u t^{2}} .
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} \frac{\operatorname{Var}(x)}{n \epsilon^{2}}=0$.
Thus, $\lim _{n \rightarrow \infty} P(|\bar{x}-\mu| \geq t)=0$.
Strong lew of large numbers
Suppose that the first moment $E[x]$ of x is finite.
then.
then,
\bar{X}_{n} converges in probability to $E[x]$,
Thus $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-E[x]\right| \geq \epsilon\right)=0$ for every $\epsilon>0$.
Ghebyshon's Inequality
Let x be a random variable and a $\in \mathbb{R}^{+}$.
Assume x has density function f_{x}, then

$$
\begin{aligned}
E\left[x^{2}\right] & =\int_{\mathbb{R}} x^{2} f_{x}(x) d x \\
& \geq \int_{|x| \geq 2} x^{2} f_{x}(x) d x \\
& \geq \partial^{2} \int_{|x|>\partial} f_{x}(x) d x=\partial^{2} P(|x| \geq \partial)
\end{aligned}
$$

So, $\quad P(|x| \geq 2) \leq \frac{1}{2^{2}} E\left[x^{2}\right]$
In general, $P(|x| \geq 2) \leq \frac{1}{\partial^{p}} E\left(|x|^{p}\right)$ for any $p=1,2$, .. \downarrow

